|
Educational resources of the Internet - Mathematics. Образовательные ресурсы Интернета - Математика. |
||
Правообладателям Стереометрические задачи и методы их решения. Готман Э.Г.
М.: 2006.— 160 с.
Книга содержит задачи по стереометрии,
предназначенные для дополнительного образования учащихся старших классов. Она
может также служить пособием для подготовки к математическим олимпиадам и к
вступительным экзаменам по математике в высшие учебные заведения.
Формат: pdf / zip Размер: 1 Мб
Предисловие Задачи по стереометрии — прекрасные упражнения, способствующие развитию пространственных представлений, умения логически мыслить, способствующие более глубокому усвоению всего школьного курса математики. Решение стереометрической задачи чаще всего сводится к решению планиметрических задач. Поэтому, решая задачи по стереометрии, всё время приходится возвращаться к планиметрии, повторять теоремы, вспоминать формулы, необходимые для решения. При решении стереометрических задач ещё в большей мере, чем в планиметрии, используются средства алгебры и тригонометрии, применяются векторный и координатный методы, дифференцирование и интегрирование. Таким образом, стереометрические задачи способствуют творческому овладению всей совокупностью математических знаний. Настоящее пособие является продолжением книги автора «Задачи по планиметрии и методы их решения» (М.: Просвещение, 1996). Тем не менее, пользоваться настоящим пособием можно и тем, кто не знаком с книгой по планиметрии, здесь нет ссылок на ту книгу. По своей структуре книга «Задачи по стереометрии» несколько отличается от предыдущей. Классификация задач в основном проводится не по методам решения, а по содержанию, по характеру геометрических фигур. Книга предназначена главным образом для учащихся старших классов, желающих углубить свои знания по математике, и может служить пособием для подготовки к математическим олимпиадам и к вступительным экзаменам по математике в высшие учебные заведения. Книга будет полезна также учителям математики, руководителям математических кружков, студентам педагогических институтов. Данное пособие содержит много довольно простых задач, по трудности мало отличающихся от задач, помещённых в школьных учебниках. Особое внимание уделено классификации задач. Для решения предлагаются не разрозненные задачи, а серии задач, связанных между собой по содержанию и методам решения. Задачи расположены в порядке возрастания трудности, так что решение первых более простых задач помогает находить решения следующих за ними. В начале каждой главы рассказано о методах решения, приводятся решения типичных задач, даны необходимые теоретические сведения. Главы 1 и 2 содержат задачи о многогранниках и телах вращения. В главах 3 и 4 собраны задачи, для решения которых целесообразно пользоваться векторным и координатным методами. Глава 5 посвящена геометрии тетраэдра. При решении задач этой главы рекомендуется использовать, где это возможно, аналогию между треугольником и тетраэдром. Глава 6 содержит разнообразные задачи на отыскание наибольших и наименьших значений геометрических величин. При этом особо выделены задачи, решаемые элементарными средствами, без применения производной. В последнюю главу 7 включены задачи на комбинацию многогранников и тел вращения. Среди них много задач повышенной трудности.
Ко всем задачам на
вычисление даны ответы. Большинство трудных задач снабжено
указаниями или краткими решениями.
Оглавление
О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."
|
||
|
||
|