Общеобразовательные |
Правообладателям
Алгебра и начала математического анализа. 11
класс (профильный уровень) Колягин Ю.М. и др.
8-е изд., стер. - М.: 2010. - 264 с.
Учебник для 11-го класса— составная часть
учебно-методического комплекта, включающего учебник для 10-го класса, а также
дидактические материалы и методические рекомендации для 10—11-го классов. Наряду
с традиционными разделами («Производная» и «Интеграл») в учебнике содержатся
главы: «Комплексные числа», «Делимость целых чисел. Целочисленные решения
уравнений», «Многочлены и алгебраические уравнения», кратко изложены элементы
комбинаторики и теории вероятностей. В книге много задач различного уровня
сложности — в том числе из вариантов вступительных экзаменов в вузы.
Формат:
djvu
/ zip
Размер:
1,8 Мб
Скачать:
rusfolder.com
Формат:
pdf
/ zip
Размер:
10 Мб
Скачать:
rusfolder.com
ОГЛАВЛЕНИЕ
Глава I.
Производная и ее применения
§ 1. Предел функции. Непрерывные функции 3
§ 2. Производная 11
§ 3. Правила дифференцирования 14
§ 4. Производная степенной функции 19
§ 5. Производные некоторых элементарных функций 23
§ 6. Геометрический смысл производной 28
§ 7. Возрастание и убывание функции 36
§ 8. Экстремумы функции 40
§ 9. Применение производной к построению графиков функций— 45
§ 10. Наибольшее и наименьшее значения функции 50
§ 11*. Производная второго порядка, выпуклость и точки перегиба 57
Упражнения к главе 1 64
Историческая справка 70
Глава II. Интеграл
§ 12. Первообразная 73
§ 13. Правила нахождения первообразных 76
§ 14. Площадь криволинейной трапеции. Интеграл и его вычисление 80
§ 15. Вычисление площадей с помощью интегралов 88
§ 16*. Применение интегралов для решения физических задач 92
§ 17*. Простейшие дифференциальные уравнения 94
Упражнения к главе II 97
Историческая справка 99
Глава III. Комплексные числа
§ 18. Определение комплексных чисел 101
§ 19. Сложение и умножение комплексных чисел 103
§ 20. Модуль комплексного числа 106
§ 21. Вычитание и деление комплексных чисел 107
§ 22. Геометрическая интерпретация комплексного числа 110
§ 23. Тригонометрическая форма комплексного числа 114
§ 24*. Свойства модуля и аргумента комплексного числа 117
§ 25. Квадратное уравнение с комплексным неизвестным 119
§ 26*. Примеры решения алгебраических уравнений 122
Упражнения к главе III 124
Историческая справка 127
Глава IV. Элементы комбинаторики
§ 27. Комбинаторные задачи. Правило умножения 129
§ 28. Перестановки 131
§ 29. Размещения 132
§ 30. Сочетания и их свойства 135
§ 31. Биномиальная формула Ньютона 138
Упражнения к главе IV 140
Историческая справка 142
Глава V . Знакомство с вероятностью
§ 32. Вероятность события 144
§ 33. Сложение вероятностей 146
§ 34. Вероятность противоположного события 148
§ 35. Условная вероятность 150
§ 36. Независимые события 154
Упражнения к главе V 156
Историческая справка 157
Глава VI. Делимость целых чисел. Целочисленные решения уравнений
§ 37. Понятие делимости. Делимость суммы и произведения 159
§ 38. Деление с остатком. Признаки делимости 161
§ 39. Сравнения 165
§ 40. Решение уравнений в целых числах 168
Упражнения к главе VI 172
Историческая справка 173
Глава VII. Многочлены и алгебраические уравнения
§ 41. Многочлены и арифметические действия над ними 174
§ 42. Деление многочленов. Схема Горнера 177
§ 43. Алгебраическое уравнение и его корни. Теорема Безу 182
§ 44. Разложение многочлена на множители 184
§ 45. Многочлены от двух и трех переменных 187
Упражнения к главе VII 192
Историческая справка 194
Упражнения для итогового повторения курса алгебры 196
Задачи для внеклассной работы 231
Ответы и указания 245
О том, как читать книги в форматах
pdf,
djvu
- см. раздел "Программы; архиваторы; форматы
pdf, djvu
и др."
|