Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

 

Гостевая

Общеобразовательные

 


Правообладателям

Теория вероятностей. Задачи с решениями.  Золотаревская Д.И. 

2-е изд., перераб. и доп. - М.: Едиториал УРСС, 2003. — 168 с.

Учебное пособие охватывает все разделы теории вероятностей, входящие в учебные программы по курсу высшей математики для студентов вузов, обучающихся по экономическим, биологическим, сельскохозяйственным и ряду технических специальностей вузов.

В каждой главе приведены краткие сведения справочного характера и типовые задачи с подробно разобранными решениями. Всего в книге приведено 135 задач и решений к ним. К ряду задач даны иллюстрации, помогающие понять ход решения.

Задачи, содержащиеся в книге, разнообразны по содержанию. Приведены задачи игрового характера, строго математические задачи, а также задачи, которые иллюстрируют возможности применения теории вероятностей в технике, экономике, биологии, в сельскохозяйственном производстве, и другие. При составлении целого ряда задач автором использованы экспериментальные данные, опубликованные в научной литературе. В каждой главе даны задачи различной трудности и расположены они в порядке возрастания их трудности, поэтому пособие может быть использовано лицами с различным уровнем математической подготовки. Объяснения решений приведены в доступной для большинства студентов форме.

Пособие поможет овладеть навыками самостоятельного решения задач по теории вероятностей.

Предназначается для студентов вузов, обучающихся по экономическим, биологическим, сельскохозяйственным, инженерным и ряду других специальностей. Может быть полезно преподавателям вузов и лицам, изучающим теорию вероятностей самостоятельно и применяющим вероятностные методы при решении практических задач.

 

 

Формат: djvu / zip  

Размер:  7 Мб

Скачать / Download файл     Скачать

 

 

 

 

 

ОГЛАВЛЕНИЕ
Глава 1. Определение вероятности события 5
1.1. Классическое определение вероятности 5
1.2. Относительная частота и статистическая вероятность... 22
1.3. Геометрические вероятности 24
Глава 2. Основные теоремы теории вероятностей 31
2.1. Теоремы сложения и умножения вероятностей 31
2.2. Формула полной вероятности 56
2.3. Формула Бейеса 63
Глава 3. Повторные независимые испытания 71
3.1. Формула Бернулли 71
3.2. Наивероятнейшее число появлений события в независимых испытаниях 80
3.3. Асимптотическая формула Лапласа 82
3.4. Формула Пуассона 85
3.5. Интегральная формула Лапласа 86
3.6. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях 90
Глава 4. Случайные величины и их законы распределения 93
4.1. Ряд, многоугольник и функция распределения дискретной случайной величины 93
4.2. Числовые характеристики дискретных случайных величин 109
4.3. Биномиальный закон распределения 117
4.4. Закон Пуассона 124
4.5. Функция распределения и плотность распределения вероятностей непрерывной случайной величины 130
4.6. Числовые характеристики непрерывных случайных величин 142
4.7. Закон равномерной плотности 146
4.8. Нормальный закон распределения 151
4.9. Показательный закон распределения 158
Приложение. Таблицы 163
Список литературы 166

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

 

 

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

Начальная школа

Средняя школа

Решение задач

ГИА (экзамен)

ЕГЭ (экзамен)

ГДЗ по математике

Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-2015    alleng.net ,  Russia,   info@alleng.net 

         

Контакты